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Abstract-The work presented here concerns a class of problems in thermal convection in which the 
mechanisms responsible for the evolution of a dynamical system to different states of self-organization are 
explored. Experimental investigations of the wavenumber and heat flux characteristics for Rayleigh-Btnard 
convection in moderate size containers with air exhibit a secondary bifurcation structure which can be 
understood, in the hierarchical sense, in terms of the behavior in families of container size as specified by 
the primary aspect ratio, L/d. It is concluded that the heat transport is strongly dependent on both size 
and shape of the container. For the work presented here, the near onset quadratic growth rate of heat flux 
is shown to relax to that of a linear growth rate in containers with increasing primary aspect ratio. The 
linear growth in heat flux has been previously obtained from experiments in extended systems, and the 
theoretical :results obtained by considering low amplitude convection in extended systems. 0 1997 Elsevier 

Science Ltd. 

1. INTRODUCTION 

Buoyancy-driven thermal convection resulting from 
the heating of a lower surface and the cooling of an 
upper surface is an important mechanism of heat and 
mass transfer in geophysical and astrophysical 
phenomena, as well as technological devices such as 
solar collectors and energy storage systems such as 
batteries. There are many cases in which the effects of 
buoyancy and density difference induced flows cannot 
be ignored. These interactions lead to interesting flow 
and stability problems. Only recently has the import- 
ance of the effects Iof natural convection on the growth 
of a pure crystal in micro-gravity been initiated. It has 
been established that natural convection develops in 
the crystal melt, and greatly affects the rate of melting, 
the shape of the crystal and, consequently, the purity 
of the crystal. The critical issues concerning buoyancy 
induced flows range from understanding the physical 
phenomena, to verifying methods of analysis. 

Rayleigh-Benard convection concerns the stability 
of horizontal fluid layers heated below and cooled 
above. Whereas much is known of the hydrodynamic 
stability characteristics of Rayleigh-BCnard con- 
vection in laterally large fluid layers [ 1,2], our knowl- 
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edge is most incomplete concerning the instability 
mechanisms as they are modulated by the presence of 
vertical boundaries. The parameters used to describe 
these processes are usually expressed as dimensionless 
groups, with the Rayleigh number (Ru) and Prandtl 
number (Pr) specifying the buoyant force and the 
fluid type, respectively, and the wavenumber (a) as an 
inverse function of the dominant length scale of the 
convection. 

2. PHYSICS OF THE RAYLEIGH-BtNARD 

PROBLEM 

The dimensionless number typifying the ratio of the 
destabilising buoyancy force to the stabilizing diffus- 
ive force is termed the Rayleigh number 
[Ra = @jI/vcc)d3 AT], where g is the gravitational con- 
stant, fi, v and tl are the coefficient of thermal expan- 
sion, kinematic viscosity and thermal diffusivity, 
respectively, d is the depth of the container and AT is 
the temperature difference between the upper and 
lower surfaces of the container. The Rayleigh number 
which signifies convective onset is called the critical 
Rayleigh number (Ra,). 

The low Rayleigh number behavior of Raleigh- 
BCnard convection is characterised by successive sec- 
ondary bifurcations. Following the primary bifur- 
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NOMENCLATURE 

A dimensionless amplitude B coefficient of thermal expansion [K-‘1 
A, B regression coefficients AT temperature difference [“Cl 
a wavenumber [2nd/L] Ax thickness of balsa substrate [m] 

a, b regression coefficients i dimensionless control parameter 
d cell height [m] [Ra/Ra, - I] 
H heating rate [min] /I wavelength-width of a roll pair 
L cell length [m] n absolute viscosity [kg m-’ s-‘1 
N normalised dimensionless heat transfer V kinematic viscosity [m’ s-‘1 
NM Nusselt number kconv/qcondl r dimensionless coherence length scale 
n number of convection rolls P density [kg m-‘1 
Pr Prandtl number [V/LX] r time constant [s]. 

4 heat flux [W m-‘1 
R thermal resistance [“C m2 W -‘I 
r control parameter, equation (17) Subscripts 
Ra Rayleigh number bgBd3 AT/vet] C cell when used with temperature 
T temperature [“Cl difference, and critical when used with 
V voltage [pVj the Rayleigh number or wavenumber 
W cell width [ml. cond conduction 

conv convection 
Greek symbols i indexing of heat flux gauges 

a thermal diffusivity [m2 s-l] m mean cell value. 

cation at convective onset in a rectangular container, 
a stable non-oscillating, two-dimensional pattern 
comprised of co-rotating convection rolls aligned par- 
allel to the short sidewalls is produced. Secondary 
bifurcations are comprised of the loss of a roll or roll 
pair with increasing buoyancy. The resulting wave- 
number reduction is attributed to the skewed varicose 
instability, which induces spatially periodic con- 
traction and dilation of convection rolls. The skewed 
varicose instability originates from the interaction of 
the nonlinear terms u(V * u), u(V * T> in the equations 
of motion and the energy equation. Growth of the 
skewed varicose instability is accompanied by macro- 
scale dislocations, which nucleate at pinches in the 
rolls and exhibit a dynamical behavior in both climb 
and glide (motions parallel and transverse to the roll 
axis). Skewed varicose instability drives wavenumber 
reduction in the moderate size container regime with 
air, but the instability mechanism is strongly modu- 
lated by the close proximity of sidewalls. The net effect 
of reducing the container size in this regime is that 
stable patterns exist at higher buoyant force than in 
large containers, and this modulation effect becomes 
more pronounced with decreasing container size. 
Moreover, wavenumber reduction is limited by 
approximately a factor of two, so that the dynamical 
events of wavenumber reduction are of increasing 
magnitude for smaller containers [3]. Consequently, 
the finite Rayleigh-Benard problem with gases exhi- 
bits a size-dependent bifurcation structure. The inter- 
est in air as a working fluid is that the secondary 
bifurcation structure induced by skewed varicose 
instability extends over a large range of buoyant force 

prior to the onset of oscillatory convection. It is then 
practical to investigate the stability of two-dimen- 
sional structure to three-dimensional disturbances 
(the skewed varicose instability), as modulated by 
container size and shape. 

Our previous studies in the mechanism involved 
with the annihilation of convection rolls [3, 41 show 
that a dislocation nucleates at a roll intersection near 
a short sidewall and at a container corner, and this 
localised feature of defect nucleation is exhibited in 
containers with secondary aspect ratio, w/L < 0.4. 
Following defect nucleation and with imposed 
increase in the buoyant force, the dislocation moves 
parallel to the short sidewall (a climbing dynamical 
motion). Destruction of the defect at the opposite long 
sidewall then produces the net loss of a convection 
roll or roll pair. (In several experiments at constant 
buoyant force, it has been possible to induce roll 
annihilation at one end of the container and followed 
by roll nucleation at the opposite end of the container. 
The dynamical features repeat in both periodic and 
aperiodic sequence (n -+ n- 1 + n . .), and this cre- 
ates a physical realization of a limit cycle. An alternate 
limit cycle (n + n - 1 + n -+ . . .) can be induced at con- 
stant buoyant force, with successive annihilation and 
nucleation of the roll at only one end of the container. 
Such experiments are highly reproducible [5].) Sec- 
ondary bifurcation in rectangular-like containers 
assumes two limiting forms : (1) a gradual transition 
from an n to n- 1 roll configuration by highly three- 
dimensional contraction and eventual annihilation of 
the wall roll (a soft-mode transition); or (2) a rapid 
annihilation of the wall roll, by a climbing motion 
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of the dislocation (a hard-mode transition). The two 
limiting forms appear to be independent of the rate of 
change in buoyant force (the experiments are operated 
at slow linear increase of the buoyant force), and the 
dynamics are mosl: definitely dependent upon the spec- 
ific container geometry [3,4]. 

Gliding dislocations are exhibited in square-like 
containers, 0.7 <: w/L < 1, and the defects also 
nucleate near the short sidewalls of the container. In 
addition to the climbing motion, gliding of a dis- 
location introduces the defect into the interior pattern. 
Motion of the defect is dominated by glide, but a small 
component of climb (a distance of the order of one or 
two roll diameters) is evident in smoke flow visu- 
alisation experiments [5]. Near w/L N 0.5-0.7 and 
L/d > 8, the initicrl secondary bifurcation is accom- 
modated by dislocation climb and annihilation. Glid- 
ing dislocations typically nucleate at one end of the 
container, and the dynamical character is manifested 
by an eventual annihilation of the dislocation at the 
opposite container wall. At an arbitrary time and at 
constant buoyant force, initiation of the process is 
usually followed by the presence of more than one 
gliding dislocation in the pattern. A single direction is 
preferred for the dynamical motions (rather as the 
vertical roll of a picture tube), and the initiation of the 
defect typically originates at the same short sidewall as 
for the previous secondary bifurcation. At constant 
buoyant force, gliding dislocations assume an aperi- 
odic dynamical character (we have previously referred 
to the aperiodic d:ynamics as phase turbulence [6], in 
the sense that there is a recognisable form of con- 
vection rolls but there is also an absence of a stable 
pattern). On increase of the buoyant force, wave- 
number reduction is accommodated by a net decrease 
of one defect nucleation event. Finally, it is noted that in 
the small container regime, L/d < 8, defects in the form 
of dislocations become embedded in the pattern. Such 
patterns can assume stationary form over a relatively 
large range of buoyant force, and the dynamical 
behavior at wavenumber reduction is most dramatic. 

The heat flux results reported here do not necess- 
arily represent the dynamics of secondary bifurcation, 
but the results clearly show the change in behavior 
corresponding to the change in wavenumber. Accord- 
ingly, results are available for rectangular-like con- 
tainers, in which the principal mechanism of wave- 
number reduction with increased buoyant force is 
accommodated by the nucleation and annihilation of 
climbing dislocations. 

3. HEAT TRANSFER TEST APPARATUS 

A schematic of the heat transfer cell is shown in 
Fig. 1. Each heat transfer surface was constructed of 
a three-layer laminate comprised of a 15 mm thick 
paraffin-filled foamed aluminum slab with embedded 
aluminum tubes, 3.2 mm thick heat flux gauges and 
0.8 mm thick aluminum plates which bound the air 

layer. The aluminum plates have been chrome-plated 
to minimize the radiation heat transfer effects. 

Two 36-gauge copper-constantan thermocouples 
were attached to each aluminum sheet, and were used 
to determine the temperature difference, AT,, across 
the air layer. Four differential thermocouples were 
installed in the air layer in the central vertical plane 
co-parallel to the long sidewalls, as illustrated by V2 
in Fig. 1. Signals produced by the intrusive sensors 
produced voltage-time histories which were utilized 
in post-test analysis. 

In these studies, thin film heat flux gauges were 
constructed based upon the work developed by Hager 
[7]. This method consists of utilizing the Seebeck effect 
to obtain a recordable voltage by fusing two dissimilar 
metals together and forming a low-impedance differ- 
ential thermocouple system which produces an emf 
proportional to the temperature difference across an 
insulator. The gauges were fabricated from 0.025 mm 
thick copper and nickel foils and were laminated to a 
3.175 mm thick balsa-wood substrate. The foils were 
silver-soldered to form line thermojunctions at both 
horizontal surfaces of the balsa wood substrate. Ther- 
mojunctions of the gauges were consequently co-par- 
allel to the long-side central vertical plane of the 
apparatus, so that the surface heat flux measurement 
is normal to the center-line cross-sections of the con- 
vection rolls. The gauges have a width of 40 mm and 
length of 100 mm, so that six gauges at both upper 
and lower surfaces were available for measurements. 

The experimental errors in heat flux, as found in 
our earlier work, were determined to be within f 5% 
[4, 81. In the design of the sensors, we have opted for 
signal strength at some loss to the dynamic response. 
The gauges produce a voltage at convective onset of 
about 10 ,uV, with measurement resolution from the 
HP-3456A voltmeter of 0.1 pV. 

A series of 14 quasi-steady calibration experiments 
were conducted, with excursion time periods of 9& 
420 min to similar steady-state conditions. Figure 2 
illustrates the positive relative error as a function of 
the offset of mean test cell operating temperature from 
the laboratory ambient temperature. The exper- 
imental data included in Fig. 2 were taken at random 
from five of the 14 experiments, which included a total 
of approximately 5000 time records of measurement. 
The relative error, 1 - I’/Vcal, is assumed as the 
relation between the measured voltage, V, and the 
least-squares generated voltage at the same cell tem- 
perature difference, I’_]. Of all attributes in our exper- 
iments, the strongest correlation of experimental error 
corresponds to a dependence of the offset temperature 
difference, $-+cal (with 4 = F=,- T, and Tc as the 
constant mean cell temperature), Fig. 2. The condition 
4 - &, -+ 0 gives identically a net adiabatic heat truns- 
fer interaction between the test cell and laboratory 
ambient. Indeed, Fig. 2 shows experimental error 
below f5% provided that the offset temperature 
difference is smaller than f0.05”C. Accordingly, the 
only heat flux results for the Rayleigh-Benard exper- 
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-heat flux gauge 
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chromed aluminum cell surface long-side wall 

Fig. 1. Schematic of apparatus used in heat flux experiments. 

0 

Al 
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I9 - &d I cw 
Fig. 2. Positive error in heat flux measurement for inner 
sensors, as taken at random from approximately 4000 time 

records in four conduction calibration experiments. 

iments reported here are those measurements for 
which 14 - &,,I < O.OYC. This stringent requirement 
for error qualification of our experimental data 
necessitated a total of 60 experiments for the five geo- 
metries considered below. 

A comparison of experimental and numerical tran- 
sient response of the heat flux gauges was performed 
in order to qualify gauge characteristics. Measure- 
ments of the thermal resistance of the gauges using 
both experimental values of temperature and voltage 
are R, = 0.217~0.005”C m* W-r and 
R, = 0.192f0.009”C m* W-‘, respectively [4, 81. The 
thermal resistance of the gauges as determined from 
numerical simulation is R, = 0.209 +O.O09”C m* W-i 
14, 81. 

The numerical experiments allowed a sensitivity 
analysis of the thermophysical properties to determine 
‘optimum’ properties of the heat flux gauges, as those 
which produce minimum error between the theoretical 
and experimental observed response of the gauges. 
The resulting study revealed that the balsa substrate 
is more sensitive to changes in thermal diffusivity than 
to changes in its heat capacity, PC,. This simply con- 
firms that the roll of the balsa substrate is that of 
thermal resistance. Based on this analysis it was found 
that an approximation to the characteristics time from 
heat conduction [9], rgauge N Ax*/u (with Ax = balsa 
thickness) as ~~~~~~ N 100 s &- 3 s [4]. 

The short-side vertical walls of the container were 
constructed of 20 mm, thick acrylic, and the long-side 
walls were constructed of either polished acrylic or 
clear fused quartz. Both the acrylic and fused quartz 
produced relatively insulative and conductive side- 
walls, respectively. The fused quartz sidewalls were 
used so as to enhance viewing during flow visual- 
ization. An air layer depth of d = 20 mm was used in 
most experiments. A range of short-side walls varying 
from 60 mm in length to 120 mm enabled the sec- 
ondary aspect ratio, w/d, to be varied. By varying 
the length of the spacers, we were able to produce 
experiments in containers at fixed LJd and with par- 
ameters w/d (d < w < L). 

4. EXPERIMENTAL METHOD 

A dimensional analysis of the heat transfer problem 
concerning Rayleigh-Benard experiments in large 
containers shows that the heat transport is dependent 
on the dimensionless Rayleigh number, Ra, which 
describes the strength in buoyant potential, and the 
wavenumber, a, which describes the principal length 
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scale of the roll pattern. The heat transfer can be 
represented in functional form as [S] 

N = N(Ra, a) (1) 

where the normalised dimensionless heat transfer is 
defined as 

N =(Nu-1):. 
c 

(2) 

In equation (2) the Nusselt number is defined by the 
traditional form [lo] 

NpE (3) 

where qcond represents the conductive heat transfer 
which would occur at AT,, and qcconv the convective 
heat transfer as induced by the same temperature 
difference. Alternate definitions for representing the 
heat transfer are, of course, available. The form for N 
in terms of Ra/Ra, produces a linear function in the 
depiction of theoretical and experimental results in 
extended geometry. Use of the Nusselt number, Nu, 
in terms of Ra/Ra, gives the traditional appearance of 
a quadratic function for the pitchfork bifurcation. 

Properties of air in the experiments were defined 
simply as follows. Kinematic viscosity, v, is dependent 
upon laboratory ambient pressure as 

VJf 
P 

and p = P/RT, is approximated as an ideal gas at 
low pressure since the compressibility factor for air at 
20°C 1.0 atm is unity [ll]. Since the experiments 
proceed at constant mean temperature T, = (Tupper 
+ T,,,,)/2 = constant, the absolute viscosity, p, is 
constant and the coefficient of volume expansion 

also remains constant, for the ideal gas model [l 11. 
The density, p, is estimated in terms of the laboratory 
ambient pressure and mean cell temperature T,. Lab- 
oratory ambient pressure was determined from a US 
Signal Corp-type room barometer with measurements 
taken at the beginning and end of the experiments. 
The error in local pressure measurements as compared 
to Weather Bureau pressure are within It: 0.6% [4, 81. 

The wavenumber is defined as [ 121 

2nd 
a=- 

a 

where the wavelength, 1, is taken as the width of a roll 
pair. At convective o:nset, Ra = Ra,, the flow structure 
is comprised of essentially square rolls of approxi- 
mately the same width as height, so a, N n. Linear 
stability theory [13] ,gives the convective onset values 
(Ra, a)c = (1707.8, 3.117) for an extended system. By 
choosing containers which have integer long-side 

dimensions, a, = n is normally observed in the exper- 
iments, but Ra, is geometry dependent [6, 14, 151. 
Consequently, for moderate size containers, the wav- 
enumber has a more complex relationship [6]. 

a = a(Ra, Pr, L/d, w/d, initial conditions) (7) 

where L/d and w/d represent the normalised length 
and width of the container. In equation (7) Pr is the 
Prandtl number and signifies the fluid under con- 
sideration. In these experiments air was the working 
fluid with Pr N 0.7, which is essentially a constant 
over the heating ranges of these experiments. The 
initial state of the test apparatus, air layer and lab- 
oratory environment, was one of thermal and mech- 
anical equilibrium in terms of temperature and pres- 
sure. 

Starting experiments systematically from this initial 
state provided, to a great extent, control over the 
initial conditions, In lieu of the above, equation (2) 
can be represented as 

N = N(Ra, a, L/d, w/d) 

with the implied condition a = a(Ra, L/d, w/d) [8]. 
In experiments, the convective heat flux at the test 

apparatus centerline, co-parallel to the long sidewalls, 
was evaluated using equation (3) as [6, 13-191 

for each heat flux gauge, i, in which Vi is the voltage 
produced in response to the cell temperature difference 
AT,. Vcond,i is the expected value for conduction heat 
transfer at the same temperature difference, AT, and 
A, B are linear regression constants determined from 
least-squares fit of the V-AT, characteristic of the 
conduction range of a convection experiment 
(Ra < 1708 for the larger containers). 

The temperature difference across the layer was 
determined from two 36-gauge copper-constantan 
thermocouples attached to each aluminum sheet and 
from a differential thermocouple with thermo- 
junctions also attached to the aluminum sheets at the 
horizontal center of the apparatus [4, 161. The thin- 
film heat flux gauges were fabricated from 25 mm 
thick copper and nickel foils, silver-soldered to form 
thermojunctions at either horizontal surface of a balsa 
substrate. Placement of the heat flux gauges in the 
apparatus resulted in local heat flux measurements at 
the central vertical plane of the test cell, so that the 
measurements obtained corresponded to conditions 
at the cross-section of the convection rolls in the par- 
allel-roll flow configuration. 

Convective heat flux at the test apparatus centerline 
co-parallel to the long sidewalls was evaluated simply 
as 
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for each heat flux gauge, i, in which I/ is the voltage 
produced at cell temperature difference AT and Vccond 
is the expected voltage for conduction heat transfer at 
the same temperature difference. To determine 
whether equation (11) gives an accurate estimate of 
the heat transfer, we physically turned the apparatus 
upside down to investigate the performance of the 
instrumentation at similar heating and cooling rates 
as those used in the convective heat flux measurement 
experiments. The constant temperature bath/re- 
circulators were operated in linear programs in these 
experiments and this produced conduction exper- 
iments at the same heat flux gauge temperatures as 
used for convective heat flux measurements. 

Figure 3 shows the efficiency of extrapolated linear 
least-squares curve fit of data for one of the heat 
flux gauges. The curve fit range assumed for each 
experiment is 0.2 < AT, < 3.28”C, with the upper 
limit as the requisite cell temperature difference to 
produce the average conditions at 0.86 atm and mean 
temperature of 23°C for convective onset in exper- 
iments with the 10 x 4 x 1 configuration (Ru, = 1850 
[4, 61). The extrapolated range in Fig. 3 is conse- 
quently over five times larger than that used to pro- 
duce the linear least-squares curve fit. The exper- 
imental data shown in Fig. 3 are taken at equal 
increments of the cell temperature difference, and as 
illustrated, the efficiency reaches optimum per- 
formance for heating periods H > 180 min. Indeed, 

80 

a 
0 

b 

d 

AT, (“C) 
Fig. 3. Efficiency of least-squares fit of conduction range, 
0.2”C < AT-c 3.28”C. Dotted lines are extrapolated linear 
functions. Heating period, H=(a) 2 h, (b) 3 h, (c) 4 h, 

(d) 5 h. 

0 2 4 6 

I-I (W 
Fig. 4. Asymptotic behavior of conduction range slope : ??
inner gauges ; ??outer gauges ; b, is the slope of linear least- 

squares fit for H = 7 h. 

Fig. 4 shows the behavior of the slope of the linear 
curve fit, b (in V = a+b AT) as a function of heating 
period, such that the best available accuracy of 
measurement is achieved for heating periods in excess 
of about 180 min. This corresponds to a maximum 
rate of increase of the Rayleigh number of approxi- 
mately 0.93 s-l. 

5. RESULTS AND DISCUSSION 

Heat flux measurement results were obtained from 
a series of experiments as described above, with excur- 
sion times of 18&240 min to similar steady states. 
Whereas the voltage produced by the thermo- 
electric/resistive heat flux gauges is a reliable measure 
of local heat flux, the measurement of heat flux is quite 
sensitive to heat transfer through the acrylic sidewalls. 
This is not surprising, noting that the ratio of sidewall 
area to heat transfer surface area for a 10 x 4 x 1 
geometry is 0.7. The heat flux data reported here are 
comprised of experimental heat flux results from a 
series of approximately 60 experiments, with those for 
which the heat transfer interaction with the environ- 
ment at the sidewalls is negligible. By ensuring that 
the mean cell temperature did not deviate by more 
than +O.O5”C from that of the laboratory environ- 
ment, a net adiabatic condition was maintained 
between the test cell and laboratory ambient. 

The heat flux growth for containers with normalised 
long sidewalls in the range 8 < L/d < 16 will be dis- 
cussed first in terms of normalised heat flux, N = (Nu 
- 1) Ra/Ra, vs Ra/Ra,, where Ra, is the corresponding 
critical Rayleigh number for each particular geometry. 
In these figures, the first flag represents convective 
onset. Subsequent flags represent changes in the heat 
flux, as induced by secondary bifurcations in the flow 
structure. Wavenumber selection in the experiments 
has been discussed previously [4, 191, and a summary 
of the results is included in Table 1 for reference. As 
noted in Table 1 and in the discussion which follows, 
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Table 1. Summary of bifurcation Rayleigh numbers [4, 191 

8X3X1 10X4X 1 12x4x 1 14X4X 1 16X6X1 

Convective onset Ra, 1880 1850 1800 1780 1730 
Single-roll loss Rar 7620 2390 2550 4270 2170 

Ra, 9600 6620 5770 5130 3450 
Ra, 10 880 9160 

Roll-pair loss RaI 9300 4620 4040 4730 
Ra, 12500 6860 5540 
& 11400 9650 

2 

N 

1 

0 

0 5 

t 
Fig. 5. Heat flux growth in experiments with 8 x 3 x 1 con- 
figuration: (1) onset of convection at Ra/Ra, = 1 
(Ra, = 1880) ; subsequent bifurcations to (2) seven rolls ; (3) 

six rolls. 

each container geometry exhibits two distinct 
sequences of secomlary bifurcation. 

Average heat flux determined in the 8 x 3 x 1 con- 
tainer is represented in Fig. 5. Convective onset is 
characterized by flag 1, and occurred at a Rayleigh 
number of Ra = 1880. Following onset, the nor- 
malized heat flux exhibits a slight quadratic growth 
(an issue to be discussed shortly), up to the first sec- 
ondary bifurcation, flag 2, which represents the eight 
roll-seven roll transition at a Rayleigh number of 
Ra = 6580. The growth in the heat flux exhibits that 
of a linear growth for the seven roll configuration 
where [4] 

dN 

d(Ra/Ra,) Ro=80Z0 = o’24’o’02’ (11) 

The slope of the growth rate are determined by linear 
least-squares fit of the data (36 points) between flags 
2 and 3. Flag 3, Fig. 5, denotes the bifurcation from 
seven to six rolls. The experiment terminated at a 
steady state Rayleigh number of 10 200. 

The average heat flux measured in the 10 x 4 x 1 

2 

N 

1 

0 

Fig. 6. Heat flux growth in experiments with 10 x 4 x 1 con- 
figuration. (1) onset of convection (Ra, = 1850), upper 
branch; (2) lOr-9r bifurcation; (3) 9r-8r bifurcation; (4) 
8r-7r bifurcation. Lower branch : (3) lOr-8r two-step roll- 

pair bifurcation [ 161. 

container is illustrated in Fig. 6. The upper branch 
(including the extrapolated portion) represents a 
sequence of single-roll loss bifurcations, whereas the 
lower branch exhibits a roll-pair loss bifurcation. This 
container size and shape is the only geometry studied 
for which we can clearly distinguish the single-roll and 
two-step roll-pair loss bifurcation sequences in heat 
flux measurement. Flag 1 indicates the onset of con- 
vection, which occurs at an average Rayleigh number 
of 1850. An extrapolation of the upper branch is 
shown in Fig. 6, as the heat flux data in that region is 
outside the f0.05”C bounds set by the experimental 
method (see Fig. 2). For the upper branch, flag 2 
indicates the 10 roll-nine roll transition (Ra = 2400), 
flag 3 the nine roll-eight roil transition, and flag 4 
the eight roll-seven roll transition. The lower branch 
represents heat flux measurements generated from 
experiments exhibiting the two-step roll-pair loss 
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3 

2 

N 

1 

0 

Fig. 7. Heat flux growth in experiments with 12 x 4 x 1 con- 
figuration. (1) convective onset (Rq = 1870) ; (2) 12r-llr 
bifurcation ; (3) 1 lr-1Or bifurcation ; and (4) lOr-9r bifur- 

cation. Terminal Ra = 10 800. 

bifurcation sequence. The 10 roll-eight roll transition 
is noted by flag 3 in the lower branch in Fig. 6. 

Figure 7 shows the average heat flux determined 
from experiments in the 12 x 4 x 1 container. Onset 
occurs at Ra = 1870, as flagged by 1 in Fig. 7. The 12 
roll-l 1 roll transition, flag 2, is soft, but as confirmed 
by time-voltage signature traces of the experiment 
occurs at Ra = 2600. The mild change of slope is 
characterised by a gradual contraction of the wall 
roll created by the climbing dislocation. The second 
secondary bifurcation, that to 10 rolls, produces a 
stronger discontinuity in the heat flux data, and is 
due to the higher convective propagation speed. An 
independent smoke flow visualization experiment 
revealed a stable 1 l-roll flow structure in the range 
Ra = 2600-5700 (i.e. between flags 2 and 3). The third 
secondary bifurcation, denoted by flag 4, illustrates 
the transition to nine rolls. 

Figure 8 shows the average heat flux determined 
from experiments in the 14 x 5 x 1 container. Onset 
occurs at Ra = 1780 and is depicted by 1. The 14 
roll-13 roll single-roll transition, flag 2, is soft an is 
characterised by the gradual contraction of the wall 
roll. Flag 3 indicates the 13-l 2 transition and reveals 
a stronger discontinuity in the heat flux. Comparison 
of the heat flux characteristics in the 14 x 5 x 1 con- 
tainer with the smaller containers reveals a more linear 
growth in the convective heat flux. 

The last geometry studied with regard to heat flux 
measurements is the 16 x 6 x 1 container, and is shown 
in Fig. 9. Onset occurred at Ra = 1730 and is depicted 

0.3 

N 

I 

Fig. 8. Heat flux growth in experiments with 14 x 5 x 1 con- 
figuration. (1) convective onset (Ra, = 1780); (2) 14r-13r 
bifurcation; (3) 13r-12r bifurcation. Terminal Ra = 5540. 

0.6 
I I 

N 

0 : 

0 1 2 

P 
Fig. 9. Heat flux growth in experiments with 16 x 6 x 1 con- 
figuration. (1) convective onset (Ra, = 1730); (2) 16r-15r 
bifurcation; (3) 15r-14r bifurcation. Terminal Ra = 5500. 

reveals a transition to a linear growth in heat flux with 
[41 

dN 
d(RalRQ Ro=Ro 

= 0.304kO.025. (12) 
F 

by flag 1. Close inspection of the onset condition The bifurcation from 16 to 15 rolls is represented by 



2, and is soft. The 15-14 bifurcation, 3, occurred over 0.6 I I 
a range of normalised Rayleigh number, 1 
1.7 < Ra < 1.9. After the 14-roll pattern has stabil- 0 01 
ised, the normalised heat flux reveals a linear growth 
as 141 

dN 
d(Ra/Ra,) lRa,Ra, = o’406’ o’180’ (13) 

The trend toward,3 linear growth in the normalised N 

heat flux is exhibited in Figs 8 and 9 and is consistent 
with the theoretical predictions of Schliiter et al. [20] 
for extended systems. The characteristics of nonlinear 
growth in the small, moderate-size containers with the 
relaxation to linear growth in larger, moderate-size 
contains for onset conditions is exploited next. 

5.1. Near convective onset heat transfer characteristics 
The heat flux in the eight-roll configuration is illus- 

trated in Fig. 10, the curve fit for which can also be 
0 

described in terms of a quadratic function. The y- 0 1 2 

intercept is identica:lly zero, N(0) = 0, by regression t 
analysis in the form Fig. 11. Quadratic growth of heat flux near onset, ten-roll, 

N configuration (10 x 4 x 1 geometry). N = 0.0895+0.12c2 for 
- = a+b[ the lower bifurcation sequence (0). 
r (14) 

where c = Ra/Ra,- 1. Thus, equation (14), with two 
terms as configuration is illustrated in Fig. 11. Here, the 

N = a[t_b12 (15) 
regression analysis produced the growth as, 
N = 0.089c+0.1212 [4]. As in the eight-roll onset 

gives the leading order representation of experiments. behavior just discussed, the heat flux growth in the lo- 
The regression ana.lysis produced the near onset roll configuration is well represented by the regression, 
growth as N = 0.066( + 0.118[* [4]. and exhibits a strong quadratic growth. Our under- 

The near onset growth in heat flux in the IO-roll standing at this time is that the quadratic growth is 
due to imperfections induced by the presence of the 
sidewalls, as discussed below. 

I ,/I 
The near onset growth in heat flux in the 12-roll 

oiO’ 
configuration is illustrated in Fig. 12. Regression 

d 1 analysis produced a growth as, N = 0.1045 +0.0189[2 
[4] Inspection of the near onset growth reveals a slight 
flattening (i.e. a trend towards linear growth) in the 
curve, and that the coefficients characterising the 
growth are of comparable magnitude. Initiation of 
the secondary bifurcation structure at Ra = 2600 is 
clearly evident in Fig. 12. 

0 1 2 
Consequently, the approach to linear growth for con- 
tainers with increasing longside dimension, as 

r exploited here, is more evidence of the demarcation 
Fig. 10. Quadratic growth of heat flux near onset, eight-roll, between the moderate and larger container regimes. 

configuration (8 x 3 x 1 geometry). N = 0.066~f0.118~‘. A summary of the near onset growth rate behavior in 
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Figures 13 and 14 illustrate the near onset heat flux 
behavior in the 14 x 5 x 1 and 16 x 6 x 1 containers, 
and exploit the relaxation in quadratic growth of the 
heat flux. Regression analysis of the 14 x 5 x 1 and 
16 x 6 x 1 for the near onset heat flux regime produced 
N = 0.155[+0.211[’ and 0.308[+0.033[2, respec- 
tively [4]. Figure 14 certainly reveals the relaxation in 
quadratic growth as compared to the smaller, mod- 
erate-size containers since the linear coefficient is a 
factor of 10 larger than the quadratic coefficient. 



J. G. MAVEETY and J. R. LEITH 794 

0.6 

N 

I I 
0 

I 
0 

O0 
I0 

ho 
d 

0' 
0' 

0.2 

N 

0 

0 1 2 

l 
Fig. 12. Quadratic growth of heat flux near onset, twelve-roll, 
configuration (12 x 4 x 1 geometry), N = 0.104~+0.189[‘. 

Flag 1 shows the bifurcation to an 1 l-roll flow structure. 

0.2 
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f 
Fig. 13. Quadratic growth of heat flux near onset, 14-roll, 
configuration (14 x 5 x 1 geometry). N = 0.155[+0.211~‘. 

the containers L/d = 8-16 are presented in Table 2 
141. 

5.2. Imperfection of bifurcation in the experiments 
The observed quadratic dependence of the heat flux 

on Rayleigh number is attributed to imperfections 
manifested in the experiments. Imperfect bifurcation 
is not only a physical realization in many experimental 
situations, but is indeed expected in the experiments 
which we report here. Adiabatic sidewalls are required 
to produce simple models of the convection, and these 

0 

l 

0.8 

Fig. 14. Quadratic growth of heat flux near onset, 16-roll, 
configuration (16 x 6 x 1 geometry). N = 0.308[+0.033~2. 

Table 2. Summary of near onset heat flux growth for 
L/d = 8-16. Tabulated values are the linear [ and quadratic 
c2 coefficients, where N = ai + bc2. The corresponding error 

estimates were computed using the 95% error interval 

Lid a b 

8 0.066 k 0.042 0.118~0.012 
10 0.089+0.016 0.120&0.016 
12 0.104~0.043 0.189+0.049 
14 0.155+0.091 0.211 kO.14 
16 0.308 + 0.01 0.033 +0.01 

same models, at lowest order, describe the convective 
onset as a supercritical bifurcation. More specifically, 
the perfect bifurcation model for convective onset is 
the pitchfork bifurcation. Our minimum-error exper- 
iments are characterized by net adiabatic conditions of 
the test cell with respect to the laboratory environ- 
ment. Since the sidewalls are constructed of acrylic, 
there are non-zero heat transfer interactions between 
the test apparatus and laboratory environment (q > 0 
near the upper surface and q < 0 near the lower 
surface, with q as the heat transfer from the laboratory 
ambient to the test cell). We noted earlier that to 
obtain accurate heat flux measurements (+ 5% error 
interval) at the long-side vertical plane of the test cell, 
it is necessary to maintain a mean cell temperature to 
within +O.O5”C of the laboratory ambient tempera- 
ture. While this is difficult to achieve in practice with- 
out the use of an environmental chamber, the results 
reported here are confined to the stated measurement 
accuracy. Even with net adiabatic conditions, there 
are heat transfer interactions present and, conse- 
quently, all bifurcations manifested in experiments, 
both primary bifurcation at onset and the hierarchy 
of secondary bifurcation at wavenumber reduction, 
are imperfect. Near convective onset (slightly super- 
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Fig. 15. Imperfection in bifurcation at convective onset. (a) 

pitchfork bifurcation, (b) imperfect bifurcation. 

critical conditions, Ra > RaJ, a dynamical system 
model can be posed as [21] 

$. = c$+rA-AX (16) 

where r = Ra - Ra,, and C#J represents the imperfection 
from the equilibrium state (dA/dt -+ 0). In this sense, 
both 4 and r are control parameters. The imperfect 
bifurcation is illustrated in Fig. 15, and C#J + 0 then 
produces the perfect pitchfork bifurcation at equi- 
librium. 

Finally, a second source of imperfection is present 
in some experiments, and is manifested as a local 
formation of an inil:ial convection roll at one short 
sidewall and followed by formation of a convection 
roll at the opposite short sidewall. The interior pattern 
subsequently forms to produce the system of rolls 
which characterise onset. Then a variation of the one- 
dimensional Ginzburg-Landau equation, or alter- 
nately the Newell-Whitehead-Segel equation is sug- 
gested as 

aA 
x = $+rA-A”+[$! (17) 

with 5 as a coherence length scale. The problem with 
equation (17) in accounting for non-equilibrium 
behavior is that only one sidewall is considered. A 
left- and right-running amplitude are then needed to 
model the two short sidewalls (the far-field condition 
cannot be enforced at x = L/2), and also the long 
sidewalls produce strong modulation of convection 
rolls. Since we have only reported experimental 
behavior in this study, the modeling issue is considered 
a peripheral concern. Influences of multiple sidewalls 
have been considere’d previously by Manneville [22]. 

Finally, the two-control parameter problem in analy- 
sis of imperfect bifurcation has been addressed pre- 
viously by Ahlers [23] and Hall and Walton [24], and 
the structural stability in related problems is discussed 
rather thoroughly by Drazin and Reid [21]. 

5.3. Comparison of experimental results with previous 
results in extended geometry 

We noted earlier that the heat flux measurements 
for the larger containers considered approach the 
behavior observed in extended systems. An earlier 
theoretical result for infinite horizontal layers was 
posed by Schhiter et al. [20] as 

Nu-1 1 

@al%) - 1 = 0.69942-0.00472/Pr+0.00832/Pr2 

(18) 

for convection rolls near onset. With Pr = 0.7, this 
gives N = 1.4091 in the notation used here. This result 
compares favorably with the correlation of exper- 
imental results reported by Hollands et al. [25] 

1708 < Ra < 5830 

(19) 

or N = 1.44c. 
In cylindrical containers of helium and diameter to 

depth ratio of D/d = 10, Ahlers [23] determined the 
near-onset heat flux as N = 0.845 for stable roll pat- 
terns and N = 0.561 for unstable patterns. The slope 
in N-c coordinates is small for heat flux measure- 
ments in the moderate size containers considered here, 
but the experimental observations for increased con- 
tainer size clearly approach the expected linear 
behavior for wide layers. We note again that our heat 
flux measurements are not average values over the 
planform of the pattern, but represent only the aver- 
age heat flux at the midplane of the pattern and co- 
parallel to the long sidewalls. 

6. CONCLUSIONS 

The nonlinear dynamical behavior in finite Ray- 
leigh-BCnard convection can be described quali- 
tatively in terms of the initial growth rate in the heat 
flux. The Ginzburg-Landau equation, or Newell- 
Whitehead-Segel equation predicts the convective 
onset as a supercritical bifurcation, in analogy with a 
second-order phase transition, and the initial growth 
rate of heat flux at low Rayleigh number. The results 
presented here are in excellent agreement with pre- 
vious experimental work in wide-layers with gases and 
cryogens. However the new results reported here for 
experiments in moderate size containers appear to 
depart from the wide-layer results in a manner which 
can be expressed as a quadratic growth in the heat 
flux. Heat flux results in the large containers shows a 
relaxation in the quadratic growth to that of a linear 
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growth which is consistent with the theoretical pre- 12. 

dictions of heat flux in extended systems. This is an 
important result since all numerical results, and most 

13, 

experimental results dealing with air have been per- 14. 
formed in extended systems. Although the quadratic 
growth in heat flux has been a point of contention by 
some investigators, this study exploits the behavior, 

15. 

and moreover is backed by precise uncertainty cal- 
culations. 

16. 
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